
Chapter 2

Composite Systems and
Entanglement

In the previous section we discussed a single two level system and while its pretty cool how
much quantum physics can be discussed when looking at such a simple system.... there’s only
so far you can go. In this chapter, we extend the quantum formalism to analyze the behavior of
quantum systems composed of many degrees of freedom. We will see that when the postulates
of quantum mechanics are applied to systems of many particles, they give rise to interesting and
counter-intuitive phenomena such as quantum entanglement.

2.1 State Space for Many Particles
Suppose we have two particles, labeled A and B. We know the state of the system comprising
both particles, which we call AB, must be described by a vector in a complex vector space. The
natural question to ask is, in what space does a generic state for the two particles, ∣ψAB⟩, live?
If we call HA and HB the vector (Hilbert) spaces in which the quantum states of the individual
particles live, then it is a postulate of quantum mechanics that a generic state vector describing
the combined system lives in a space

HAB = HA ⊗HB.

The symbol ⊗ refers to a tensor product, a mathematical operation that combines two vector
(Hilbert) spaces to produce another one.

The meaning of the tensor product is more easily understood in terms of explicit basis vectors,
in the case of discrete vector spaces. For this purpose, let us assume that HA is spanned by
a set of basis vectors {∣µ1⟩, ∣µ2⟩, ∣µ3⟩, . . . ∣µnA

⟩} and that HB is spanned by a set of other basis
vectors {∣ν1⟩, ∣ν2⟩, ∣ν3⟩, . . . ∣νnB

⟩}. Then, the vector space HAB is by construction spanned by
basis vectors consisting of all the pairwise combinations of the basis vectors of A and B, and
the basis states of the composite system are written as

∣µi⟩ ⊗ ∣νj⟩ ∀ i ∈ [1, nA], j ∈ [1, nB].

We can see that the total number of basis states for the composite system is nA × nB. All
quantum states in HAB can be written as linear combinations of the composite basis states:

∣ψAB⟩ = ∑
ij

cij ∣µi⟩ ⊗ ∣νj⟩ = ∑
ij

cij ∣λij⟩

13



Quantum Physics II CHAPTER 2. COMPOSITE SYSTEMS AND ENTANGLEMENT

with cij being some complex coefficients, and where we have defined the basis vectors ∣λij⟩ ≡
∣µi⟩ ⊗ ∣νj⟩.

In order to work with these states, we need to know how to perform inner products between
states belonging to the tensor product space HAB. The inner product between two basis states
is defined as

⟨λij ∣λkl⟩ = (⟨µi∣ ⊗ ⟨νj ∣)(∣µk⟩ ⊗ ∣νl⟩) ≡ ⟨µi∣µk⟩⟨νj ∣νl⟩ = δikδjl.

This definition is relatively easy to understand: the inner product is obtained as the product of
the elementary (A or B) inner products. Also, it shows that the basis states of the composite
system are orthogonal by construction. As a consequence, the inner product between two generic
states of the composite system

∣ϕ⟩ = ∑
ij

bij ∣λij⟩, ∣ψ⟩ = ∑
ij

cij ∣λij⟩,

reads
⟨ϕ∣ψ⟩ = ∑

ij
∑
kl

b∗ijckl⟨λij ∣λkl⟩ = ∑
ij

b∗ijcij .

We also see that the basis states of the composite system satisfy the closure relation:

∑
ij

∣λij⟩⟨λij ∣ = I.

Formally speaking, the tensor product satisfies all the intuitive properties you might expect from
a product. For example, given a scalar a and two arbitrary vectors ∣v⟩ ∈ HA and ∣w⟩ ∈ HB, we
have

a(∣v⟩ ⊗ ∣w⟩) = (a∣v⟩) ⊗ ∣w⟩ = ∣v⟩ ⊗ (a∣w⟩) .

It is also distributive:
(∣v1⟩ + ∣v2⟩) ⊗ ∣w⟩ = ∣v1⟩ ⊗ ∣w⟩ + ∣v2⟩ ⊗ ∣w⟩,

∣v⟩ ⊗ (∣w1⟩ + ∣w2⟩) = ∣v⟩ ⊗ ∣w1⟩ + ∣v⟩ ⊗ ∣w2⟩.

Finally, the construction of the product state space can be generalized from the case of two
particles to the case of many particles, A, B, C, ..., since the composite vector (Hilbert) space
will be simply given by the tensor product of the individual state spaces

HABC... = HA ⊗HB ⊗HC . . . ,

and in general, the resulting space will have a large dimension when we have many particles,
since it is the product of the size of the individual dimensions

nABC... = nA × nB × nC × . . . .
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2.1.1 Example: Two Qubits

Let us see an example of this formalism in the case of two qubits, i.e., for that case that HA
and HB are both vector spaces of dimension 2. As basis states of the individual spins, we take
the eigenkets of σZ , thus the resulting tensor product space is given by the 4 states

∣1⟩AB = ∣0⟩A ⊗ ∣0⟩B
∣2⟩AB = ∣0⟩A ⊗ ∣1⟩B
∣3⟩AB = ∣1⟩A ⊗ ∣0⟩B
∣4⟩AB = ∣1⟩A ⊗ ∣1⟩B,

and a generic state of two qubits is written as

∣ψ⟩AB =
4
∑
k=1

ck∣k⟩AB,

where, as always, by definition
ck = ⟨k∣ψ⟩.

For example, take

∣ψ⟩ = 1√
2
(∣0⟩A ⊗ ∣1⟩B − ∣1⟩A ⊗ ∣0⟩B) =

1√
2
(∣2⟩ − ∣3⟩) .

We can easily check that this is a physically valid state, since it is correctly normalized:

⟨ψ∣ψ⟩ = 1
2
(⟨2∣2⟩ + ⟨3∣3⟩) = 1.

A note on notation! Writing out the composite state of ∣ψ⟩ and ∣ϕ⟩ as ∣ψ⟩ ⊗ ∣ϕ⟩ can feel a
bit cumbersome. So we often don’t bother to explicitly write out the ⊗ and instead write ∣ψ⟩∣ϕ⟩
or just ∣ψϕ⟩. That is,

• ∣ψ⟩ ⊗ ∣ϕ⟩

• ∣ψ⟩∣ϕ⟩

• ∣ψ,ϕ⟩

• ∣ψϕ⟩

all mean the same thing! And you need to become comfortable switching between these nota-
tions.

2.2 Operators
So far, we have introduced the state space for a system of many particles, but we haven’t talked
about the operators that act on this space, and how they are related to the measurement process.
If we have two operators TA and TB acting on the individual spaces, the resulting operator that
acts on the product space is also written as a tensor product:

TAB = TA ⊗ TB,
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where the resulting operator TAB now acts on vectors in the space HA ⊗HB. The composite
operator acts as follows:

TAB ∣λij⟩ = (TA ⊗ TB) (∣µi⟩ ⊗ ∣νj⟩) ≡ (TA∣µi⟩) ⊗ (TB ∣νj⟩) ,
thus, quite naturally, each of the two operators in the product acts on the kets that belong to
the respective vector spaces. As a special case, notice that if we are given only an operator that
acts on one of the two subsystems, this is to be understood as

T ′AB = TA ⊗ IB
if only TA is given, and where IB is the identity operator for subsystem B. Similarly,

T ′′AB = IA ⊗ TB,
if only TB is given. As a result, it is easy to see that these two operators, acting non-trivially
only on one of the two subsystems, commute since:

T ′′ABT
′
AB ∣λij⟩ = (IA ⊗ TB) (TA ⊗ IB) (∣µi⟩ ⊗ ∣νj⟩) = (TA∣µi⟩) ⊗ (TB ∣νj⟩) ,

T ′ABT
′′
AB ∣λij⟩ = (TA ⊗ IB) (IA ⊗ TB) (∣µi⟩ ⊗ ∣νj⟩) = (TA∣µi⟩) ⊗ (TB ∣νj⟩) ,

thus
[TA ⊗ IB, IA ⊗ TB] = 0.

2.2.1 Example: Spin 1
2 Operators

Let us give again an example for two qubits A and B. For concreteness, let’s now suppose that
the qubit represents a spin 1/2 particle. We write the spin z operator on the two individual
systems as1 S

(z)
A = 1

2ZA where ZA is the standard Pauli operator on system A such that

S
(z)
A ∣m⟩A =m∣m⟩A,

S
(z)
B ∣m

′⟩B =m′∣m′⟩B,
for m,m′ = ±1

2 . It is then natural to define the total spin as the sum of these two operators. In
order to do so, however, we need to recall that these operators are acting on different spaces, thus
before summing them up we need to “upgrade” them to be good operators for the composite
vector space. The total S(z)AB operator reads:

S
(z)
AB = S

(z)
A ⊗ IB + IA ⊗ S(z)B .

It is then straightforward to see how this operator acts on a general state. For example, if we
take a basis vector for the composite system, we have

S
(z)
AB (∣m⟩A ⊗ ∣m

′⟩B) = (S(z)A ⊗ IB + IA ⊗ S(z)B ) (∣m⟩A ⊗ ∣m
′⟩B)

= (S(z)A ∣m⟩A) ⊗ ∣m
′⟩B + ∣m⟩A ⊗ (S(z)B ∣m

′⟩B)

=m (∣m⟩A ⊗ ∣m′⟩B) +m′ (∣m⟩A ⊗ ∣m′⟩B)
= (m +m′) (∣m⟩A ⊗ ∣m′⟩B) .

(2.1)

thus the composite state is an eigenket of the total spin, with an eigenvalue (m+m′) that is the
sum of the individual eigenvalues.

Remember that a qubit can represent all sorts of different systems and so this maths applies more
broadly. For example, if the qubit represents two energy levels of an atom with a Hamiltonian
HA = ωZA then HA ⊗ IB + IA ⊗HB would allow us to compute the total energy of two atoms.

1Remember, we work in nice tidy units such that h̵ = 1
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A note on notation! In the case of a composite operator HA ⊗HB you cannot drop the ⊗
(this is because HAHB looks like you are multiplying the matrices) but its common to be lazy
and drop identity operations. That is, write ZA instead of ZA ⊗ IB or Z ⊗ I. So, for example,

• ZA ⊗ IB + IA ⊗ZB

• Z ⊗ I + I ⊗Z

• ZA +ZB

mean the same thing. Again, you’ll need to get comfortable switching notations.

2.2.2 Explicit matrix and vector representation of the tensor product

Generally you should try and stick to braket notation - this is typically simpler than writing
out explicit matrix descriptions of states of multi-qubit systems. But sometimes it is helpful to
visualise the composite vectors/operators explicitly. The basic idea behind the tensor product
is to multiply a copy of the second matrix by each element of the first matrix in turn and so we
have

( a
b
) ⊗ ( α

β
) =
⎛
⎜⎜⎜
⎝

aα
aβ
bα
bβ

⎞
⎟⎟⎟
⎠
.

Note that, for example, the matrix representation of ∣10⟩ is

( 0
1 ) ⊗ (

1
0 ) =

⎛
⎜⎜⎜
⎝

0
0
1
0

⎞
⎟⎟⎟
⎠
,

exactly what would be naively expected. An equivalent approach can be used for operators, e.g.

( 1 0
0 1 ) ⊗

1√
2
( 1 1

1 −1 ) =
1√
2

⎛
⎜⎜⎜
⎝

1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

⎞
⎟⎟⎟
⎠
.

2.3 Measurements

For the single-component case, recall that the measurement process in quantum mechanics
works as follows. Consider a measurement operator Â with eigenkets ∣Ai⟩ and corresponding
eigenvalues ai. Without loss of generality, an arbitrary state ∣ψ⟩ can be expressed in this basis:

∣ψ⟩ = ∑
i

βi∣Ai⟩, where βi = ⟨Ai∣ψ⟩ ∈ C.

Measuring ∣ψ⟩ under the operator Â collapses the state into eigenket ∣Ai⟩ with probability Pi =
∣βi∣2, producing measurement result ai.

In the case of a composite system, there are two kinds of measurements we can perform.
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2.3.1 Global Measurement

In the first case, we measure an operator T = TA ⊗ TB, thus intrinsically defined to act on the
joint vector space, and in this sense corresponding to a measurement of the entire system AB.
Similarly to the standard situation, then we can diagonalize the operator:

T ∣Ti⟩ = ti∣Ti⟩,

in such a way that (assuming the operator has a non-degenerate spectrum)

∣ψ⟩ = ∑
i

∣Ti⟩⟨Ti∣ψ⟩,

thus a measurement will yield the state ∣Ti⟩ with probability Pi = ∣⟨Ti∣ψ⟩∣2.

2.3.2 Partial Measurement

In the second case, we can measure an operator that is defined only on one of the two subsystems,
for example TA. In this sense, we are performing a partial measurement of the system, since we
measure only the properties of one subpart, ignoring the rest of the system. We can rewrite a
generic state of two particles as

∣ψ⟩ = ∑
ij

cij ∣TAi⟩ ⊗ ∣TBj⟩ = ∑
i

∣TAi⟩ ⊗
⎛
⎝∑j

cij ∣TBj⟩
⎞
⎠
= ∑

i

∣TAi⟩ ⊗ ∣ϕBi ⟩,

where we have defined
∣ϕBi ⟩ = ∑

j

cij ∣TBj⟩.

This expression then allows us to get a better intuition about what happens when we measure
only the first subsystem (A). In that case, assuming that we measure the operator TA with
eigenvalues tAi, it is postulated that after the measurement the system collapses into

∣ψ′i⟩ ∝ ∣TAi⟩ ⊗ ∣ϕBi ⟩.

The probability for this to happen is postulated to be

Pi = ⟨ψi∣(∣TAi⟩⟨TAi∣ ⊗ IB⟩)∣ψi⟩

which is a generalization of what we have seen for the single particle case. That is, you’re just
measuring the projector on system A and doing the trivial identity measurement on system B.
Let’s see what this evaluates to:

Pi = ⟨ψi∣(∣TAi⟩⟨TAi∣ ⊗ IB)⟩∣ψi⟩ = ⟨ϕBi ∣ϕBi ⟩ = ∑
j

c∗ij⟨TBj ∣∑
k

cik∣TBk⟩ = ∑
jk

δjkc
∗
ijcik = ∑

j

∣cij ∣2,

We can also explicitly compute the normalization of the state after the measurement, which
reads

∣ψ′i⟩ =
1√

⟨TAi∣TAi⟩⟨ϕBi ∣ϕBi ⟩
∣TAi⟩ ⊗ ∣ϕBi ⟩ =

1√
∑j ∣cij ∣2

∣TAi⟩ ⊗ ∣ϕBi ⟩ = ∑
j

cij√
Pi
∣TAi⟩ ⊗ ∣TBj⟩.
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2.3.3 Example: Qubit Measurements

Let us consider again an example for two qubits. We consider the state

∣ψ⟩ = 1√
2
(∣0⟩A ⊗ ∣1⟩B − ∣1⟩A ⊗ ∣0⟩B) ,

and let us suppose that we are interested in measuring Z on system A. As always, this measure-
ment can yield only two possible outcomes, 1 and −1.

The probability of obtaining +1 on the first qubit is the sum of i. the probability that the first
qubit is in the +1 state (∣0⟩) and the second qubit is in the +1 state (∣0⟩) and ii. the probability
that the first qubit is in the +1 state (∣0⟩) and the second qubit is in the −1 state (∣1⟩). That is,
P0 = ∣c00∣2 + ∣c01∣2 = 1

2 . On getting this outcome, the system then collapses into the normalized
state ∣0⟩A ⊗ ∣1⟩B.

In the other case, i.e., if we get the −1 outcome, it is easy to see that the system collapses into
∣1⟩A ⊗ ∣0⟩B also with probability P− = 1

2 .

2.4 Entanglement
In the previous discussion, we have seen that the measurement of one part of the system directly
influences the outcomes of a measurement of the other part. This is one manifestation of what is
called quantum “entanglement”. More specifically, a state of two systems is said to be entangled
if its coefficients cannot be written as the product of two independent coefficients.

If instead, the global wave function can be written as the product of two wave functions corre-
sponding to the subsystems A and B, then we say that the system is “separable”. For a separable
state, the wave function then reads

∣ψ⟩sep = ∑
ij

cij ∣TAi⟩⊗ ∣TBj⟩ = ∑
ij

c
(A)
i c

(B)
j ∣TAi⟩⊗ ∣TBj⟩ = (∑

i

c
(A)
i ∣TAi⟩)⊗

⎛
⎝∑j

c
(B)
j ∣TBj⟩

⎞
⎠
= ∣ψ⟩⊗ ∣ϕ⟩.

If a system is separable, we also immediately see that a measurement performed on one part
does not affect the other one. For example, if we measure TA, the system will collapse into some
state

∣ψi⟩ = ∣TAi⟩ ⊗ ∣ϕ⟩,

with probability ∣c(A)i ∣2, but the resulting state for the subsystem B will always be ∣ϕ⟩, indepen-
dently of the outcome of the measurement on A.

To explicitly determine whether a state is separable or entangled, we have to check whether the
matrix of coefficients factorizes or not, namely if the condition cij = c(A)i c

(B)
j is verified or not.

For example, for two qubits, the condition of separability reads

c00 = c(A)0 c
(B)
0 ,

c01 = c(A)0 c
(B)
1 ,

c10 = c(A)1 c
(B)
0 ,

c11 = c(A)1 c
(B)
1 ,

These conditions are satisfied if

c00c11 − c01c10 = c(A)0 c
(B)
0 c

(A)
1 c

(B)
1 − c(A)0 c

(B)
1 c

(A)
1 c

(B)
0 = 0,
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Equivalently, we can write det ĉ = 0 where we have conveniently arranged the coefficients cij in
a matrix:

ĉ = (c00 c01
c10 c11

) .

Thus, if the determinant of the coefficient matrix for the state in the composite basis is zero,
then the state is separable.

For example, our state
∣ψ⟩ = 1√

2
(∣0⟩A ⊗ ∣1⟩B − ∣1⟩A ⊗ ∣0⟩B) ,

has a coefficient matrix

ĉ =
⎛
⎝

0 − 1√
2

1√
2 0

⎞
⎠
,

whose determinant is non-zero, and it is thus an entangled state.

Right, that’s the basic mathematical formalism you need to be familiar with in order to study
the behaviour of composite systems. Let’s move onto something more exciting and look at the
consequences of this formalism.
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2.5 The Quantum Eraser

The two slit experiment is often the first thought experiment a student encounters when study-
ing quantum mechanics. Here we will explore some variants to it that highlight the curious
interplay between coherence, interference and entanglement.

Standard two slit experiment (1): Let us start with the standard two slit experiment. We
suppose that single horizontally polarized photons impinge on a screen with two slits and hit a
second screen placed behind the first (see Fig. 2.1a)). Although the photons hit the screen one
by one we see an interference pattern on the screen behind.

Standard two slit experiment (2): We now suppose that a 90 degrees polarisation shifter
is placed behind one of the slits (so that the light coming through it now is vertically polarized)
but otherwise leave the set up unchanged (Fig. 2.1b). What happens this time?

In this case the interference pattern does not arise. Instead we see a simple mixture of the two
patterns we would get if the photons went either through the top or the bottom slit as shown in
Fig. 2.1b. This is because if we measured each photons polarisation then we would be able to
determine if it went through the top or the bottom slit. Even if we do not in fact check which
slit we went through this information is enough to destroy the interference pattern.

Figure 2.1: Quantum eraser experiments

Here is how to understand this mathematically. Let ψ1(x, t) be the wavefunction of a photon
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emerging from the first slit, and ψ2(x, t) be that from the second slit. Let the polarisation of a
photon be labelled by a H (horizontal) or V (vertical) substate, so that a horizontally-polarised
photon emerging from the first slit is written as ∣ψ1,H⟩ = ∣ψ1⟩ ⊗ ∣H⟩. In the original two slit
experiment the state of the photon after going through the two slits is of the form

∣Ψ(x, t)⟩ = 1√
2
(∣ψ1(x, t)⟩+ ∣ψ2(x, t)⟩) ⊗ ∣H⟩ (2.2)

and on measuring the position of the particle at the second screen we get the probability density

P (x) = ⟨Ψ(x, t)∣ (∣x⟩⟨x∣ ⊗ I) ∣Ψ(x, t)⟩

= 1
2
(⟨ψ1(x, t)∣ + ⟨ψ2(x, t)∣)∣x⟩⟨x∣(∣ψ1(x, t)⟩+ ∣ψ2(x, t)⟩)⟨H ∣H⟩

= 1
2
⟨ψ1(x, t) + ψ2(x, t)∣ x⟩⟨x ∣ψ1(x, t) + ψ2(x, t)⟩

= ∣ψ1(x, t) + ψ2(x, t)∣2/2 .

(2.3)

In the second case the state of the photon after passing through the two slits and the polarization
shifter is of the form

∣Φ(x, t)⟩ = 1√
2
(∣ψ1(x, t)⟩⊗ ∣V ⟩+ ∣ψ2(x, t)⟩⊗ ∣H⟩) (2.4)

and so the probability density function of the photons hitting the screen is

P (x) = ⟨Φ(x, t)∣ (∣x⟩⟨x∣ ⊗ I) ∣Φ(x, t)⟩
= ⟨ψ1(x, t)∣ x⟩⟨x ∣ψ1(x, t)⟩⟨V ∣V ⟩ + ⟨ψ2(x, t)∣ x⟩⟨x ∣ψ2(x, t)⟩⟨H ∣H⟩
= (∣ψ1(x, t)∣2 + ∣ψ2(x, t)∣2)/2

(2.5)

That is we have a probabilistic mixture because the cross terms, the interference terms, have
vanished because ⟨H ∣V ⟩ = 0.

Quantum eraser: We now suppose that as well as the 90 degrees polarisation shifter behind
one of the slits we add a polaroid sheet at 45 degrees, which only outputs light in the state
∣↗⟩ = 1√

2(∣H⟩ + ∣V ⟩). This is shown in Fig. 2.1c). What happens this time?

We see the interference pattern again but at half the intensity. Why? The light coming through
the top slit is vertically polarized and the photons coming through the bottom slit is horizon-
tally polarized. The polaroid sheet effectively measures the polarization degree of freedom in
the {∣↗⟩ , ∣↙⟩} basis where ∣↗⟩ = 1√

2(∣H⟩ + ∣V ⟩) and ∣↙⟩ = 1√
2(∣H⟩ − ∣V ⟩), and only lets through

measurement outcomes that project the light to ∣↗⟩. Now both H and V photons have a 50%
chance of being measured to be ∣↗⟩ and so the sheet lets through only half the photons. But
crucially all the photons (both the ones from the upper slit and the lower slit) that get let
through are in the ∣↗⟩ state and so it’s impossible to determine which slit any photon went
through.

Lets see how this looks mathematically. First let’s rewrite the Φ state in the {∣↗⟩ , ∣↙⟩} basis,

∣Φ(x, t)⟩ = 1√
2
(∣ψ1(x, t)⟩⊗ ∣V ⟩+ ∣ψ2(x, t)⟩⊗ ∣H⟩)

= 1
2
(∣ψ1(x, t)⟩⊗ (∣↗⟩− ∣↙⟩) + ∣ψ2(x, t)⟩⊗ (∣↗⟩+ ∣↙⟩))

(2.6)
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After going through the filter the state becomes

∣Φ(x, t)′⟩ = 1
2
(∣ψ1(x, t)⟩⊗ ∣↗⟩+ ∣ψ2(x, t)⟩⊗ ∣↗⟩) (2.7)

This is of the same form as Eq. (2.2) except i. we have an extra factor of 1/
√

2 out the front
and ii. all the photons are now in the ↗ polarization state instead of the H state. It follows
that the interference pattern is the same as Eq. (2.3) but with an extra factor of 1/2 out the
front. That is we see the interference pattern but with the intensity reduced by 1/2 as claimed:

P (x) = ∣ψ1(x, t) + ψ2(x, t)∣2/4 . (2.8)

Exercise: What changes if the polaroid sheet only lets through ∣↙⟩ = 1√
2(∣H⟩ − ∣V ⟩) photons?

Delayed quantum eraser: Let’s go back to the simple two slit experiment and this time place
an atom behind one of the slits as sketched in Fig. 2.1d). Now this would be hard to arrange
in practise but let us suppose that the photon that passes the atom flips the spin of an outer
electron from ∣↓⟩ to ∣↑⟩ but is not absorbed2. (For each photon that we send through the two slit
experiment we use a new atom and store the previous in a quantum memory). What happens
in this case?

Concretely, after passing through the two slits and past the atom the system is in the state:

∣Φ(x, t)⟩ = 1√
2
(∣ψ1(x, t)⟩⊗ ∣↑⟩+ ∣ψ2(x, t)⟩⊗ ∣↓⟩)

= 1
2
(∣ψ1(x, t)⟩⊗ (∣↗⟩− ∣↙⟩) + ∣ψ2(x, t)⟩⊗ (∣↗⟩+ ∣↙⟩))

(2.9)

Then we can read off the expected interference patterns in the different cases:

• Measure in the Z basis:

If we obtain ∣↑⟩ then the pattern is ∣ψ1(x, t)∣2.
If we obtain ∣↓⟩ then the pattern is ∣ψ2(x, t)∣2.

• Measure in the X basis:

If we obtain ∣↗⟩ then the interference pattern is 1
2 ∣ψ1(x, t) + ψ2(x, t)∣2.

If we obtain ∣↙⟩ then the interference pattern is 1
2 ∣ψ1(x, t) − ψ2(x, t)∣2.

So it would seem that the interference pattern we observe depends on the basis that the atom
is measured in. If the atom is measured in basis {∣↑⟩ , ∣↓⟩} then we end up with version 2 of the
standard two slit experiment where we know which slit the photon went through. However, if we
measure in the {∣↗⟩ , ∣↙⟩} basis we end up with the quantum eraser version, and the interference
reappears (but we do not lose half the photons this time).

The interference pattern depends on the basis that the atom is measured in - something we
subjectively choose. And more puzzling still, this is true even if the atoms are taken far away
before being measured! So a natural thought might be - can we use this to signal?

[Some blank space to encourage you to think about this before reading the answer]
2An experiment of this spirit but not of this exact form has been conducted. Take a look at the wikipedia

page on the delayed quantum eraser to learn more.
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2.6 No signalling

Ok, so could we use the delayed eraser setup for a superluminal signal? On the surface it might
look like we should be able to. Suppose Bob can perform measurements on the atom, and Alice
watches the screen subsequently impacted by photons. They try and signal (Bob is the sender,
Alice is the receiver) using the code that an interference pattern corresponds to the bit ‘0’ and
no interference corresponds to the bit ‘1’. Then, it would seem that Bob could measure Z or
X to send ‘0’ or ‘1’ to Alice and this would be true no matter how far away he is from Alice,
seemingly allowing superluminal signalling. However, if Bob could signal to Alice in this way it
would violate special relativity. So what breaks down?

Well the key thing to note is that the interference pattern depends on not just the measurement,
but the measurement outcome. Say the atom is measured in the Z basis. Bob will obtain ∣↑⟩
and ∣↓⟩ with equal probabilities (because the photon is equally likely to go through either slits)
and so the resulting pattern on the screen is

p(x) = (∣ψ1(x, t)∣2 + ∣ψ2(x, t)∣2)/2 . (2.10)

Similarly, if Bob measures in the X basis then the states ∣+⟩ and ∣−⟩ are obtained with equal
probabilities and so the resulting pattern is

p(x) = (∣ψ1(x, t) + ψ2(x, t)∣2 + ∣ψ1(x, t) − ψ2(x, t)∣2)/2 = (∣ψ1(x, t)∣2 + ∣ψ2(x, t)∣2)/2 . (2.11)

That is, the pattern is the same in either case!

In order to be able to communicate with this set up Bob would need to tell Alice for each photon
that went through the setup which outcome he obtained. She could then mark the photons
according to the outcome obtained and determine whether or not an interference pattern was
observed for measurement outcomes of the same sort (corresponding to X measurement) or no
interference pattern (corresponding to Z measurement). However, this requires communication
which defeats the purpose of the purported signalling protocol.

Ok, so this quantum erasor protocol doesn’t work. Could another more general protocol work?
Suppose Alice and Bob each have a qubit of a generic entangled state ∣Ψ⟩ that they want to
use to try and signal. Suppose Bob considers performing two different measurements upon his
qubit; M (B1) which has outcomes corresponding to projectors Π(B1)

0 and Π(B1)
1 , and M (B2)

which corresponds to projectors Π(B2)
0 and Π(B2)

1 . In words: the superscript indicates which
measurement axis he chose, and the subscript indicates what outcome he obtained therefrom.
Bob intends to signal a bit ‘0’ or ‘1’ to Alice via his choice of measurement. Suppose these
measurements collapse Alice’s state as follows:

1. Bob measures M (B1), obtaining the outcome described by Π(B1)
i :

Alice’s qubit enters state ∣ψi⟩ with probability pi.

2. Bob measures M (B2), obtaining the outcome described by Π(B2)
i :

Alice’s qubit enters state ∣ϕi⟩ with probability qi.

Then in order for Alice to infer whether Bob measured M (B1) or M (B2), she must perform some
measurement M (A) that, at the very least 3 , has different outcome probabilities depending on

3What else would be required? How can Alice determine the probabilities of her measurement outcomes?
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Bob’s measurement. Let Π(A) be the projector of one of her possible measurement outcomes
(it’s not necessary to think about the other outcome). Alice requires that

P (Π(A)∣M (B1)) ≠ P (Π(A)∣M (B2)) (2.12)
Ô⇒ ∑

i

pi ⟨ψi∣Π(A) ∣ψi⟩ ≠ ∑
i

qi ⟨ϕi∣Π(A) ∣ϕi⟩ . (2.13)

It turns out that it is impossible to find such an operator. That is, for any choice of Π(A), the
above expression is a strict equality. It follows that it is impossible to use an entangled state to
communicate faster than the speed of light. For an example of this see this chapter’s problem
sheet. We will also demonstrate this more rigorously when we cover reduced states in a few
lectures time.

2.7 Non-locality and Bell inequalities
In this section we will explore how quantum entanglement can produce correlations that cannot
be explained by classical observers that pre-share classical correlated data/randomness. More
concretely, we will see how Bell’s theorem, and experimental verifications of it, imply that not
only quantum physics but also our world is inherently ‘non-local’. I will start this section with
an unconventional way of framing the Bell’s Theorem that I have shamelessly borrowed from
Terry Rudolph.

2.7.1 Quantum Psychics

Figure 2.2: The Quantum Psychics Game.

Suppose there were two friends Alice and Bob who claimed to share a psychic connection. How
could you go about testing it? Let’s put Alice and Bob into isolated rooms with no way they
can pass any messages between them. Outside Alice’s room is a sceptic, let’s call him Spock,
who tosses a coin and tells Alice the outcome. Outside Bob’s room is another sceptic, Kirk, who
similarly tosses a coin and tells Bob the outcome. Alice and Bob must then respond with either
yes ‘Y’ or no ‘N’. What can Spock and Kirk ask Alice and Bob to do to try to determine if they
are psychic? They consider the following tests...

Test 1: Every time Alice and Bob get told the same coin outcome they must give the same
answer, every time they get different outcomes they must give different answers.
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This clearly is a flawed test. Alice and Bob can pass it simply by deciding in advance that they
will both say yes to heads and no to tails.

Realising this, the Spock and Kirk instead toy with proposing an alternative test...

Figure 2.3: The Quantum Psychics Game: Test 1.

Test 2: Every time Alice and Bob get told the same coin outcome they must give opposite an-
swers, every time they get different flips they must give the same answers.

On further thought this test is equally flawed. Alice and Bob agree in advance that they will
give different outcomes. That is, Alice says yes to heads and no to tails but Bob does the converse.

Instead the Spock and Kirk propose the following test.

Figure 2.4: The Quantum Psychics Game: Test 2.

Test 3: Every time Alice and Bob get told ‘H’ they must give opposite answers, but otherwise
they must give the same answer.

Now if you play around with this you’ll see that there is no strategy that Alice and Bob can
cook up in advance in order to fool the sceptics. Try this! After playing with a few examples,
the easiest way to definitively prove it to yourself is to represent the binary answers ‘Y’ and ‘N’
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by +1 and -1 respectively. Then the rules of the game can be formalized as trying to find an
assignment of AH , AT , BH and BT such that

AHBH = −1
AHBT = 1
ATBH = 1
ATBT = 1

(2.14)

Multiplying the left hand side of these four equations together gives A2
HA

2
TB

2
HB

2
T which has to

be positive. However, multiplying the right hand side together gives −1. Hence there cannot be
an assignment of AH and BH that satisfies all the rules of the test and as such this test is a
viable means to testing if Alice and Bob are psychic.

In fact, the maximum number of rules that can be satisfied in Eq. 2.14 for any strategy taken by
Alice and Bob is 3. (Convince yourself of this!) That is, at best Alice and Bob can pick a strategy
that will lead to them fooling the sceptics for 3 out of the 4 possible coin toss combinations:

Pwin ≤ 3/4 . (2.15)

This is an example of a Bell inequality. If Alice and Bob reliably can win with a probability
significantly greater than 3/4 then it would seem reasonable to assume that they really are ‘psy-
chic’ (by which I mean, there are correlations that cannot be explained by previously decided
classical scheme for correlating their answers).

However, if Alice and Bob share entangled Bell states, ∣ϕ+⟩ = 1√
2 (∣00⟩ + ∣11⟩), then they can use

the non-classical correlations stored in the Bell state to pass the sceptics test. Alice and Bob’s
strategy to do so is as follows.

• If Alice gets told ‘H’ she measures in the Z basis and says ‘Y’ if she gets ‘∣0⟩’ and ‘N’ if
she gets ‘∣1⟩’.

• If Alice gets told ‘T’ she measures in the X basis and says ‘Y’ if she gets ‘∣+⟩’ and ‘N’ if
she gets ‘∣−⟩’.

• If Bob gets told ‘H’ he measures in the basis

{∣h⟩ = sin(π/8)∣0⟩ + cos(π/8)∣1⟩ , ∣h⟩ = cos(π/8)∣0⟩ − sin(π/8)∣1⟩} (2.16)

and says ‘Y’ if he gets ‘∣h⟩’ and ‘N’ if she gets ‘∣h⟩’.

• If Bob gets told ‘T’ he measures in the basis

{∣t⟩ = cos(π/8)∣0⟩ + sin(π/8)∣1⟩ , ∣t⟩ = sin(π/8)∣0⟩ − cos(π/8)∣1⟩} (2.17)

and says ‘Y’ if he gets ‘∣t⟩’ and ‘N’ if she gets ‘∣t⟩’.

Alice and Bob can beat test 3 with probability

PQuantum = cos(π/8)2 = 2 +
√

2
4

≈ 0.854 . (2.18)

Exercise: Check this!
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However, crucially this is an intriguing form of telepathy. They can use it to cheat the sceptics
test but (as we saw before and you will see in the problem sheet) they cannot use it to signal. So
is it useful for anything? In fact, it proves useful in quantum cryptography (but that is beyond
the remit of this course).

Terry’s quantum psychics version of the Bell inequality is entirely equivalent to a more conven-
tional framing of the Bell’s theorem known as the CHSH inequality. Rather than asking what
is the probability of Alice and Bob winning test 3, the CHSH inequality is a bound on the sum
of the expectation values of the product of Alice and Bob’s answers for each of the different
possible combinations of outcomes. That is, a bound on the correlation coefficient

C ∶= ⟨ATBT ⟩ + ⟨AHBT ⟩ + ⟨ATBH⟩ − ⟨AHBH⟩ (2.19)

where AjBk are placeholders for Alice and Bob’s measurement outcomes when told the toss
outcome was j and k respectively. For example, AH and BH are placeholders when they are
both told H and so

⟨AHBH⟩ = (−1) × P (AH = 1,BH = −1∣H,H) + (−1) × P (AH = −1,BH = 1∣H,H)
+ (+1) × P (AH = 1,BH = 1∣H,H) + (+1) × P (AH = −1,BH = −1∣H,H) .

(2.20)

and similarly for the other expectations values. We want to relate this to probability of winning
in test 3,

Pwin =
1
4
(P (AH = 1,BH = −1∣H,H) + P (AH = −1,BH = 1∣H,H)

P (AH = 1,BT = 1∣H,T ) + P (AH = −1,BT = −1∣H,T )
P (AT = 1,BH = 1∣T,H) + P (AT = −1,BH = −1∣T,H)

P (AT = 1,BT = 1∣T,T ) + P (AT = −1,BT = −1∣T,T ))

(2.21)

To do so, we note that as the probability of the different outcomes have to sum to 1, we can
write ⟨AHBH⟩ as

⟨AHBH⟩ = 1 − 2(P (AH = 1,BH = −1∣H,H) + P (AH = −1,BH = 1∣H,H)) . (2.22)

On using a similar trick with the other expectations values, the probability of winning in test 3
is given by

Pwin =
1
8
((1 − ⟨AHBH⟩) + (1 + ⟨AHBT ⟩) + (1 + ⟨ATBH⟩) + (1 + ⟨ATBT ⟩)) =

1
2
+ 1

8
C . (2.23)

As Pwin ≤ 3/4, it follows that

C = 8(Pwin −
1
2
) ≤ 2 . (2.24)

However, for quantum players we have Pquantum = 1
2 +

√
2

4 and so

Cquantum = 2
√

2 . (2.25)
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2.7.2 More formal derivation (i.e. pinning down exactly what is spooky)

We introduced Bell inequalities above with a thought experiment about testing psychics. This
hopefully helped to give you an intuition about what is so strange about violating a Bell inequal-
ity. Below we present a more formal derivation of the CHSH inequality that helps to pin down
precisely how the correlations of a Bell inequality violating system are different to conventional
classical correlations.

Figure 2.5: The CHSH Inequality

Consider a bipartite system where one part is sent to a LHS measuring device and the other
to a RHS measuring device as sketched in Fig. 2.5. The LHS measuring device has a lever
allowing it to measure either A or A′. The RHS measuring device can be set to B or B′. When
a measurement is made the light under either “Yes” or “No” turns on. We are interested in the
correlations between result combinations when measurements are made on the different settings.

Let the probabilities of different result combinations be written as P (l, r∣LR) where L and R
are placeholders for the settings of the left and right measuring devices (i.e., L can take values
A or A′ and R values B and B′) and l and r are placeholders for the results shown on the LHS
and RHS measuring devices and as such can be either be“yes” or “no”.

Bell inequalities define a correlation coefficient C as in Eq. (2.30) and then place an upper bound
on possible values this coefficient can take if you assume “factorisability”.

Factorisability is the statement that the probability of l and r can be written as

p(l, r∣LR) = ∫ P (l∣L,λ)P (r∣R,λ)P (λ)dλ . (2.26)

What is the significance of the factorisability assumption? If events x and y are un-
correlated then their joint distribution can be written as P (x, y) = P (x)P (y). Similarly, the
statement: P (x, y∣α,β, γ) = P (x∣α,β, γ)P (y∣α,β, γ) says that the probabilities of x and y are
uncorrelated once you take into account variables α,β and γ. Put another way, factors α,β and
γ are sufficient to explain any correlations in the probabilities of x and y.

For example, it seems reasonable to expect that the probability that a pub sells more than
100 ice creams in a day, P (x), is correlated of the probability that the pub sells more than
1000 pints of cider, P (y), but these correlations can be explained by taking into account all the
various common factors such as outside temperature (α), day of the week (β), and the number
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of important sporting fixtures that day (γ). The parameter λ is introduced to incorporate all
such common factors4 and giving the original statement of factorisability, Eq. (2.26).

As such, the statement of “factorisability” used to set up the Bell inequality can be understood
as follows. Given λ, the probability of the outcome of a particular measurement on the LHS
given that A is measured, is uncorrelated to the probability of a particular result on the RHS,
given that B is measured. That is, λ incorporates all effects from the system’s shared history.

In terms of the experimental set up we are considering here λ represents all information con-
cerning the initial state of the system and the experimental equipment before the system is
divided and sent to the different measuring devices. As such, by denying that the joint prob-
ability distribution is factorisable we are denying that the correlations between the individual
properties are explained by the local factors incorporated in λ. In this way, denying this form
of correlation amounts to saying that the correlations are inexplicable in terms of local variables.

There are two necessary conditions for factorisability to hold:

1. Setting Independence: P (l∣L,B,λ) = P (l∣L,B′, λ)

The outcome on the LHS does not depend on what measurement is performed on the RHS
and vice versa.

2. Outcome Independence: P (l∣A,R, r, λ) = P (l, ∣A,R, r′, λ)

The outcome of LHS does not depend on the outcome of the outcome of the RHS, except
in so far as them both depend on λ.

These two conditions lead to factorisability as follows. Given outcome independence, it makes
sense to talk of individual probability distributions for l and r, and so we can say that

P (l, r∣L,R,λ) = P (l∣L,R,λ)P (r∣L,R,λ) (2.27)

Given setting independence we can further say that

P (l∣L,R,λ) = P (l∣L,λ) (2.28)

and similarly for r. It thus follows that

P (l, r∣L,R,λ) = P (l∣L,λ)P (r∣R,λ) (2.29)

which leads directly to the factorizability condition Eq. (2.26). Thus, if a system is not factor-
izable then either outcome independence or setting independence (or both) does not hold.

In addition to factorizability two further implicit, but seemingly very reasonable assumptions,
are required.

1. “Single outcome assumption": On each run of the experiment only one result is obtained
at each measuring device5.

4Note; λ only includes factors from the events shared histories, it does not include explicit information about
the results of either x or y. My example above would not be factorisable if a pub had a rule that every time 25
ice creams were sold they would toss a coin to decide whether to sell any more ciders that day.

5This may seem an odd assumption to explicitly state; however, it does not hold under the many worlds
interpretation of quantum mechanics.
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2. “No conspiracy assumption”: On each run on the experiment we only obtain results for
one of four possible measurements (A&B, A′&B, A&B′, A′&B′). We find the probabilities
required to calculate C by averaging out over many runs of the experiment. We need to
assume that bias is not introduced by the measuring technique so that the samples used
to calculate the probabilities are fair.

Once you have these two definitions the rest of the derivation is basic probability and algebra.
In what follows we present the original derivation by Bell which is slightly more general than
that presented in the psychic section. Specifically, we will aim to bound

C ∶= ∣⟨LR⟩ − ⟨LR′⟩∣ + ∣⟨LR⟩ + ⟨L′R⟩∣ . (2.30)

Using the factorisability condition we have

⟨LR⟩ = ∑
l,r=±1

lrP (l, r∣L,R) (2.31)

and similarly for the other terms in C.

Theorem 2.7.1. Suppose that ±1 are the only allowed values for l and r. The “outcome in-
dependence”, “setting independence”, “single outcome” and “no conspiracy assumptions” above
imply that

C ≤ 2

for all choices of parameters l, r, l′, r′.

The core intuition for why this holds is the same as in the psychics case. But for completeness,
here is the full proof.

Demo.

For convenience let us implicitly define

⟨LR⟩ ∶= EL,R(l ⋅ r) ∶= ∫ EL,R(l ⋅ r∣λ)P (λ)dλ = ∑
l,r=±1

lrP (l, r∣L,R)

where EL,R(l ⋅ r) is the expectation value of the product l ⋅ r for a given choice of L and R.
EL,R(l ⋅ r∣λ) represents the same quantity, conditioned on λ. Then we have

EL,R(l, r∣λ) = EL(l∣λ)ER(r∣λ) ∀λ,L,R

from which

C = ∣⟨LR⟩ − ⟨LR′⟩∣ + ∣⟨LR⟩ + ⟨L′R⟩∣
≤ ∫ [∣EL(l∣λ)∣ ⋅ ∣ER(r∣λ) −ER′(r∣λ)∣ + ∣ER(r∣λ)∣ ⋅ ∣EL(l∣λ) +EL′(l∣λ)∣]P (λ)dλ

≤ ∫ [∣ER(r∣λ) −ER′(r∣λ)∣ + ∣EL(l∣λ) +EL′(l∣λ)∣]P (λ)dλ

where the first inequality is taken from

∣∫ f(x)dx∣ ≤ ∫ ∣f(x)∣dx

and the second one
∣Eα(l∣λ)∣ ≤ 1

The proof of the theorem follows from
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Lemme 2.7.2. for x, y ∈ R and x, y ∈ [−1,1] we have ∣x − y∣ + ∣x + y∣ ≤ 2

Demo.

(∣x − y∣ + ∣x + y∣)2 = 2x2 + 2y2 + 2∣x2 − y2∣

=
⎧⎪⎪⎨⎪⎪⎩

4x2 x2 > y2

4y2 x2 < y2

≤ 4

Bell’s non-locality theorem on its own does not tell us which of setting and outcome independence
is violated quantum mechanics. However, violation of either of those criterions is sufficient to
show that quantum mechanics is in some sense non-local. Bell’s non-locality theorem tells us
either that the setting of the other measuring device, or the particular measurement outcome,
affects the measurement outcome at the other device.

Note, that there is nothing to prevent the measurement events at the two different devices from
being spacelike, and so in terms of our current physical theories causally, separated. As such,
either the information concerning the setting of the other measuring device, or result of the other
measurement, is communicated at greater than the speed of light. However the former would
violate the no signalling theorem. Hence we conclude that Quantum Mechanics violates
outcome independence not parameter independence.

The correlation coefficient is constructed to apply to any physical theory which makes predictions
for the probability of results in any experimental set up of the general structure outlined above.
In particular, the derivation makes no direct appeal to either quantum mechanics or determinism.
Experiments have subsequently confirmed that the CHSH-Bell inequality is violated by our
world. This tells us that any fundamental physical theory for the world we live in (not just
quantum mechanics but also any theory that makes accurate predictions about our world!)
must have non-local features.

2.8 Contextuality
The final quantum property we will discuss in this chapter is contextuality. It is a less discussed
quantum property but nicely completes the set discussed in this chapter so we will cover it in
brief. The best example to get a quick sense of contextuality is the Peres-Mermin (PM) square
introduced by Kochen and Specker.

Here we consider a set of 9 different binary measurements, each of which can give the outcomes
±1. Classically, we see this as being 9 properties of an object that we observe (+1) or do not
observe (-1) in our system. We ask that observables in the same column or row form a context,
or in other words, are jointly measurable.

⎡⎢⎢⎢⎢⎢⎣

A B C
a b c
α β γ

⎤⎥⎥⎥⎥⎥⎦
Let ABC denote the product of the values obtained from measuring A, B and C. Here, BC
would be the measurement context of A. The observed properties can be probabilistic, so
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we define ⟨ABC⟩ = p(ABC = +1) − p(ABC = −1). We then consider (analogously to Bell
inequalities) a correlation coefficient, this time of the form:

⟨PM⟩ = ⟨ABC⟩ + ⟨abc⟩ + ⟨αβγ⟩ + ⟨Aaα⟩ + ⟨Bbβ⟩ − ⟨Ccγ⟩ (2.32)

Classically we would expect measurements to be noncontextual. That is, we would expect
the result of an observable to not depend on its context (the other measurements performed).
If we assume our measurements are non-contextual (i.e., have pre-determined values) then the
maximum value the PM square can take is 4. In fact,

−4 ≤ ⟨PM⟩ ≤ 4 (2.33)

To see this note that the only way for the function f to have a value of 6 would be for all the
products in the definition of f to be 1 except for the product Ccγ to be equal to −1. If the 5
first terms of the sum are all equals to 1, their product would also be equal to one, leading to:

A2B2a2b2α2β2cCγ = 1,

implying that Ccγ is equal to 1. This proves that f ≤ 4. A similar argument can show that
f ≥ −4.

However, by carefully picking our quantum observables, can show ⟨PM⟩ can exceed 4. Form the
table of quantum observables as follows

⎡⎢⎢⎢⎢⎢⎣

A B C
a b c
α β γ

⎤⎥⎥⎥⎥⎥⎦
corresponding quantum example→

⎡⎢⎢⎢⎢⎢⎣

σz ⊗ I I⊗ σz σz ⊗ σz
I⊗ σx σx ⊗ I σx ⊗ σx
σz ⊗ σx σx ⊗ σz σy ⊗ σy

⎤⎥⎥⎥⎥⎥⎦
. (2.34)

One can readily check that the columns and rows are made of commuting operators and so are
jointly measurable as required.

Further note that the products of observables in the same contexts {A,B,C}, ... are the identity
except Ccγ = −I. Thus we have ⟨PM⟩ = 6 which violates Eq. (2.33). Note that this result
is input state independent! Any two qubit state (entangled or unentangled) is contextual. It
follows that quantum mechanics is contextual. Broadly contextuality can be understood as
stemming from the fact that observables in quantum mechanics do not commute. (Like Bell’s
inequality, violations of the PM bound have been experimentally verified.)
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